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Results of the modeling of the process of heat transfer from a circular tube filled with granular bed with
boundary conditions of the first, second, and third kind have been presented. The physical characteristics of
the wall zone and the relative value of its thermal resistance have been determined based on an analysis of
experimental data on the nonstationary heat exchange of the unblown granular bed. Recommendations on cal-
culation of the heat exchange at elevated temperatures have been given.

Processes in which one has to supply or remove heat from the gas (fluid) flowing in a granular-bed-filled
tube are frequently used in technology. Characteristic examples are provided by catalytic reactors for catalytic reactions
and units for thermal processing of a solid fuel. To calculate the temperature distribution in the bed and the surface
required for removal of a prescribed quantity of heat one must know the regularities of heat transfer in such a system.
As is well known [1], the main problem arising in this case is correct account of the influence of the thermal resis-
tance of the wall zone on the heat transfer from a wall of the tube filled with the granular medium. Experimental in-
vestigation of this question has been the objective of a fairly ample amount of literature (see, for example, [1–3]).
Ae′rov et al. [1] have recommended for engineering calculations the following dependence:
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where λs
0 ⁄ λf = 5 (non-heat-conducting particles) and λs

0 ⁄ λf = 15 ((metallic) heat-conducting particles). The range of
check of (1) is Ree = 1–104.

A more detailed experimental study of the process in filtration through a layer of water and a 47% glycerin
solution, carried out recently in [3], has shown that the regularities of heat exchange in such a system are more com-
plex than those described by formula (1). Experimental points in the coordinates Nuw/Pr0.4, Re were markedly strati-
fied in the region of inertial and transient flow regimes (Re < 120), without enabling one to reveal a unified law of
heat exchange. It is only in the turbulent regime (Re > 120) that such a "universal" law has been established:
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 . (2)

It is clear from what has been said above that our knowledge of the process of heat exchange in the system
is still far from being adequate. As the analysis shows, this is primarily true of the physical characteristics of the wall
zone and the influence of the type of boundary conditions and of the radiant heat transfer on the heat exchange.

1. Influence of the Type of Boundary Conditions. 1.1. Boundary Condition of the First Kind on the Exte-
rior Tube Surface. The system of equations for the two-band model has the form
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r = 0 ,   
∂T
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0
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r = R − l0 ,   − λ 
∂T
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 = K (T − T0) ,

(3)

where K = 1/(1/αw + δ ⁄ λm) is the heat-transfer coefficient allowing for the thermal resistance of the wall zone (1/αw)
and the tube wall (δ ⁄ λm). To solve system (3) we write it in a dimensionless form coincident with the known problem
of calculation of the nonstationary temperature field in an unbounded cylinder with boundary conditions of the third
kind:
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The solution of (4) has the form [4]
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 and µn are the roots of the characteristic equation

J0 (µ)
J1 (µ)

 = 
1
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 µ . (6)

The series in (5) converges rapidly. When Fo > 0.1 (this corresponds to x > 0.1cfρfuR2 ⁄ λ, we can confine ourselves
just to the first term of the series

θ C A1J0 (µ1r′) exp (− µ1
2
 Fo) . (7)

For the heat-transfer coefficient determined by the relation

KΣ = K 
T r=R−l0

 − T0

sTt − T0
 , (8)

from (7) with account for l0 << R we have

KΣ = K 
J0 (µ1) µ1

2J1 (µ1)
 . (9)

We note that, in obtaining (9), we have employed the relation [4, p. 121]
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With account for (6), Eq. (9) yields

KΣ = K 
µ1

2

2 Bi
 . (11)

For µ1 we have carried out the simple approximation

µ1 = √ 2 Bi
1 + Bi ⁄ 2.8915

 , (12)

which enables us to obtain, from (11), the final expression for KΣ:
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Formula (13) involves all the components of the total thermal resistance.
1.2. Boundary Condition of the Third Kind on the Exterior Tube Surface. In the case of the heat exchange of

the ambient medium with the exterior tube surface according to the Newton law with a heat-exchange coefficient αw
∗

we can easily obtain the expression for the heat-transfer coefficient from the generalization of (13):

KΣ
∗
 = 1 ⁄ 





1

αw

 + 
D

5.78λ
 + 

δ
λm

 + 
1

αw
∗



 . (13à)

1.3. Boundary Condition of the First Kind on the Inside of the Tube. The expression for the heat-transfer co-
efficient for this case immediately follows from (13) when δ ⁄ λm → 0:
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1.4. Boundary Condition of the Second Kind. In this case, the system of equations will have the form
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For the heat-exchange coefficient determined by the relation

α = αw 
T r=R−l0

 − Tw

sTt − Tw
 , (16)

by solution of system (15) in [2] it has been obtained that
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As is seen, formula (17) is similar to (14) in structure, and it differs only in the numerical coefficient in the expres-
sion of the thermal resistance of the granular bed. Combining (14) and (17), we obtain a generalized formula for the
coefficient of heat exchange of the granular bed with the interior surface of a circular tube:

α = 1 ⁄ 


1
αw

 + 
D
Cλ



 , (18)

where C = 5.78 (boundary conditions of the first kind) and C = 8 (boundary conditions of the second kind).
As is seen, all the formulas obtained for the coefficients of heat transfer and heat exchange (13), (13a), (14),

and (17) involve only one unknown parameter — the wall heat-exchange coefficient — which calls for its detailed
physical analysis and determination.

2. Wall Coefficient of Heat Exchange. Taking into account the relative smallness of the wall-zone thickness,
we can represent the quantity αw in the form

αw = λeff
 ⁄ l0 . (19)

To determine l0 we employed the results of experiments on nonstationary heat exchange of the granular bed of non-
heat-conducting particles with the wall in the case of an immobile gas phase [5]. The processing of these data carried
out in [6] in the coordinates Nu, Fo∗  has led to the following result, which is important in the context of the present
work:

   lim
Fo

∗
→ 0

  Nu = 10. (20)

Taking into account the fact that the overall thermal resistance is concentrated in the wall region at short times, we
can justifiably set

   lim
Fo

∗
→ 0

  Nu = Nuw = 10. (21)

Disregarding the influence of heat transfer in the spots of contact between the non-heat-conducting particles and the
surface, we can set λeff C λf for the case of the absence of blowing of the bed. Then, substituting the expression of
αw from (19) into (21), we have

l0 = 0.1d . (22)

We note that virtually the same result is obtained after the geometric averaging of variable thicknesses of gas lenses
which are formed by spherically shaped particles adjacent to the tube wall [7].

For determination of λeff in the general case we assume the validity of the relation

λeff = Aλf + Bcf ρfud , (23)

which is analogous in form to the well-known dependence for calculation of the effective thermal conductivity of a
granular bed with a moving gas phase [8]

λ = λs
0
 + 0.1cf ρfud , (24)

where the value of λs
0 is given by the expression
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λs
0

λf
 = 1 + 

(1 − ε) (1 − λf
 ⁄ λs)

λf
 ⁄ λs + 0.28ε0.63(λs

 ⁄ λf)
0.18 . (25)

As has been noted earlier, we have λeff C λf for non-heat-conducting particles when u = 0. Consequently, here
A = 1. In the case of heat-conducting (metallic) particles it is obvious that A > 1 with allowance for the influence of
contact heat conduction. The specific value of A can also be determined by analysis of the experiments on nonstation-
ary heat exchange of the granular beds of copper spheres [9]. In [6], it has been established that

   lim
Fo

∗
→ 0

  Nu = Nuw = 16. (26)

Substituting the expression of αw from (19) into (26) for l0 = 0.1d, we have the relation

λeff = 1.6λf , (27)

which determines the value A = 1.6 in the case of heat-conducting particles. The coefficient B on the convective side
of (23), which has remained unknown, can easily be found from a comparison of the calculated αw values obtained
from (19)

αw = 
10
d

 (Aλf + Bcfρfud) (28)

and the available experimental data. The employment of the results of determination of αw in [10] has yielded
B C 0.0061. It is of interest to note that B C 0.0061 ⁄ ε was obtained earlier in [11] for the case of a developed
fluidized bed. The coefficient A was virtually equal to unity for both non-heat-conducting and conducting particles,
which is, apparently, attributed to the high mobility of the particles at the heat-exchange surface. Finally, for calcula-
tion of the wall coefficient of heat exchange we have

Nuw = 10 (A + 0.0061 Re Pr) . (29)

Figure 1 compares the values of αw calculated from (29) and the experimental values of αw in the case of
heat-conducting and non-heat-conducting particles.

For the ratio of the thermal resistance of the wall zone to the total thermal resistance, Eq. (18) yields

Nu
Nuw

 = 
1

1 + 
2 Bi

∗

C

 . (30)

Fig. 1. Wall coefficient of heat exchange: I) calculation from (29) for A = 1.6;
II) the same for A = 1; 1) data [10] for glass and silica-gel spheres; 2) the
same for steel and lead spheres.
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With account for (24) and (29) we have
Nu

Nuw
 = 

1

1 + 
D

dC
 
10A + 0.061 Re Pr

λs
0 ⁄ λf + 0.1 Re Pr

 . (31)

Figure 2 shows the calculation of Nu/Nuw for the following parameters: A = 1, λs
0 ⁄ λf = 4, and Pr = 0.72. Figure

3 shows the calculation of the heat-exchange coefficient for the same values of the parameters according to the
formula

Nu = 
1

1
10A + 0.061 Re Pr

 + 
D ⁄ d

C (λs
0 ⁄ λf + 0.1 Re Pr)

 , (32)

obtained from (18), (24), and (28). The same figure shows dependences (1) and (2) for the wall coefficient of heat
exchange and the equation established in [3] for the inertial regime of heat exchange (Re < 120):

Nu = 7.5 
d
D

 Re
0.5

 Pr
0.33

 . (33)

As is clear from Fig. 3, when the Re numbers are higher than average, the values of Nu and Nuw are fairly close
for small D/d numbers. This indicates the dominant role of the thermal resistance of the wall zone under these
conditions.

Based on formulas (31) and (32) we can easily obtain the limiting values of the quantities Nu/Nuw and Nu
for large Re:

lim 
Nu

Nuw
 = 

1

1 + 
0.61D

Cd

 , (34)

Fig. 2. Fraction of thermal resistance of the wall zone in the total thermal re-
sistance for A = 1: 1 and 1′) calculation from (31) for C = 8; 2 and 2′) the
same for C = 5.78.

Fig. 3. Coefficient of heat exchange in a circular tube filled with granular bed
for A = 1: 1 and 1′) calculation from (32) for C = 8; 2 and 2′) the same for
C = 5.78; 3 and 3′) calculation from (33); 4) calculation from (1); 5) calcula-
tion from (2).
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lim Nu = 




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






 Re Pr . (35)

3. Influence of Radiant Transfer. It is easy to generalize the results obtained to the case of elevated tem-
peratures where the radiant transfer of heat becomes substantial. For this purpose it is proposed that the component of
the effective thermal conductivity of the granular bed λs

0 in formula (24) be calculated according to the Kunii model
[1, pp. 104–105] allowing for the influence of the radiant transfer of heat on the quantity λs

0:

λs
0

λf
 = ε 


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

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 + 

1 − ε

1

1
φ
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 , (36)

where

α1 = 0.227 


1
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 ; (37)

α2 = 0.227 
p
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 


T
100





3

 . (38)

For the parameter ϕ, when ε C 0.4, we have proposed the following simple approximation:

φ = 0.25 




λs

λf





 −0.27

 . (39)

Rough calculations show that λs
0 ⁄ λf C 8 (room temperatures), λs

0 ⁄ λf C 16 (T = 873 K), and λs
0 ⁄ λf C 25 (T = 1073 K)

for ε = 0.4 and λs
0 ⁄ λf C 100. In accordance with this, the heat-exchange coefficient markedly increases (especially for

large D/d). Thus, in accordance with (32), we have Nu T=1073/Nu T=273 C 2 (for D/d = 50, A = 1, C = 8, Re = 100,
and Pr = 0.72).

Conclusions. As a result of the investigation carried out, we have determined the most important physical
characteristics of the wall zone of a granular bed — the zone’s thickness (22) and effective thermal conductivity (23),
where A = 1 (non-heat-conducting particles), A = 1.6 (heat-conducting particles), and B = 0.0061. We have obtained
the expression for calculation of the wall coefficient of heat exchange (29) and the general dependence for the coeffi-
cient of heat exchange of the granular bed with the interior surface of a circular tube, which allows for the influence
of the type of boundary conditions (32). Within the framework of this dependence, we have carried out a generaliza-
tion to the case of elevated temperatures where radiant heat transfer becomes substantial.

NOTATION

af, thermal diffusivity of the gas (fluid), m2/sec; A and B, coefficients determined in (23); Bi = KR/λ and Bi*

= αwR ⁄ λ, Biot numbers; C, coefficient determined in (18); cf, heat capacity of the gas (fluid), J/(kg⋅deg); d, diameter
of particles, m; de = 4εd/6(1 − ε), equivalent (hydraulic) diameter of particles, m; D, inside diameter of the tube, m;
Fo = λx ⁄ ρfcfuR2 and Fo∗  = aft ⁄ d

2, Fourier numbers; J0 and J1, Bessel functions of the first kind of zero and first
order respectively; l0, thickness of the wall zone, m; Nu = αd ⁄ λf, Nuw = αwd ⁄ λf, and Nuw,e = αwde

 ⁄ λf, Nusselt num-
bers; p, emittivity of the particle surface; Pr = µfcf

 ⁄ αf, Prandtl number; q, heat flux, J/(m2⋅sec); r, radial coordinate,
m; r′ = r/R; R = D/2, m; Re = udρf

 ⁄ µf and Ree = udeρf
 ⁄ εµf, Reynolds numbers; t, time, sec; T, absolute temperature,

K; sTt, temperature average over the cross section x = const, K; T0, temperature of the gas (fluid) at the inlet to the
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tube, K; T0, ambient temperature, K; u, rate of filtration of the gas (fluid), m/sec; x, longitudinal coordinate, m; α,
heat-exchange coefficient, W/(m2⋅deg); δ, thickness of the tube wall, m; ε, porosity; θ = (T − T0)/(T0 − T0), dimension-
less relative temperature; λ, effective thermal conductivity of the granular bed, W/(m⋅deg); λm, thermal conductivity of
the tube material, W/(m⋅deg); λs

0, thermal conductivity of the granular bed for u = 0, W/(m⋅deg); λs, thermal conduc-
tivity of the particle material, W/(m⋅deg); λf, thermal conductivity of the gas (fluid), W/(m⋅deg); λeff, effective thermal
conductivity of the wall zone, W/(m⋅deg); µf, dynamic viscosity of the gas (fluid), kg/(m⋅sec); ρ, density of the gas
(fluid), kg/m3. Subscripts: e, equivalent; eff, effective; f, gas (fluid); m, tube material; s, particles; w, wall; Σ, total.
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